90 research outputs found

    Thoracoscopic vs. catheter ablation for atrial fibrillation: long-term follow-up of the FAST randomized trial

    Get PDF
    Aims: Our objectives were to compare effectiveness and long-term prognosis after epicardial thoracoscopic atrial fibrillation (AF) ablation vs. endocardial catheter ablation, in patients with prior failed catheter ablation or high risk of failure. Methods and results: Patients were randomized to thoracoscopic or catheter ablation, consisting of pulmonary vein isolation with optional additional lines (2007–2010). Patients were reassessed in 2016/2017, and those without documented AF recurrence underwent 7-day ambulatory electrocardiography. The primary rhythm outcome was recurrence of any atrial arrhythmia lasting >30 s. The primary clinical endpoint was a composite of death, myocardial infarction, or cerebrovascular event, analysed with adjusted Cox proportional hazard ratios (HRs). One hundred and 24 patients were randomized with 34% persistent AF and mean age 56 years. Arrhythmia recurrence was common at mean follow-up of 7.0 years, but substantially lower with thoracoscopic ablation: 34/61 (56%) compared with 55/63 (87%) with catheter ablation [adjusted HR 0.40, 95% confidence interval (CI) 0.25–0.64; P < 0.001]. Additional ablation procedures were performed in 8 patients (13%) compared with 31 (49%), respectively (P < 0.001). Eleven patients (19%) were on anti-arrhythmic drugs at end of follow-up with thoracoscopy vs. 24 (39%) with catheter ablation (P = 0.012). There was no difference in the composite clinical outcome: 9 patients (15%) in the thoracoscopy arm vs. 10 patients (16%) with catheter ablation (HR 1.11, 95% CI 0.40–3.10; P = 0.84). Pacemaker implantation was required in 6 patients (10%) undergoing thoracoscopy and 3 (5%) in the catheter group (P = 0.27). Conclusion: Thoracoscopic AF ablation demonstrated more consistent maintenance of sinus rhythm than catheter ablation, with similar long-term clinical event rates

    The effect of trastuzumab on cardiac function in patients with HER2-positive metastatic breast cancer and reduced baseline left ventricular ejection fraction

    Get PDF
    We investigated the effect of trastuzumab on cardiac function in a real‐world historic cohort of patients with HER2‐positive metastatic breast cancer (MBC) with reduced baseline left ventricular ejection fraction (LVEF). Thirty‐seven patients with HER2‐positive MBC and baseline LVEF of 40% to 49% were included. Median LVEF was 46% (interquartile range [IQR] 44%‐48%) and median follow‐up was 18 months (IQR 9‐34 months). During this period, the LVEF did not worsen in 24/37 (65%) patients, while 13/37 (35%) patients developed severe cardiotoxicity defined as LVEF 5%‐points below baseline) in 3/13 (23%) patients and irreversible (defined as absolute LVEF increase 5%‐points below baseline) in 3/13 (23%) patients. Likelihood of reversibility was numerically higher in patients who received cardio‐protective medications (CPM), including ACE‐inhibitors, beta‐blockers and angiotensine‐2 inhibitors, compared to those who did not receive any CPM (71% vs 13%, P = .091). Sixty‐five percent of patients who received trastuzumab for HER2‐positive MBC did not develop severe cardiotoxicity during a median follow‐up of 18 months, despite having a compromised baseline LVEF. If severe cardiotoxicity occurred, it was at least partly reversible in more than two‐thirds of the cases. Risks and benefits of trastuzumab use should be balanced carefully in this vulnerable population

    Cardiotoxicity during long-term trastuzumab use in patients with HER2-positive metastatic breast cancer: who needs cardiac monitoring?

    Get PDF
    Purpose: Patients with HER2-positive metastatic breast cancer (MBC) usually receive many years of trastuzumab treatment. It is unknown whether these patients require continuous left ventricular ejection fraction (LVEF) monitoring. We studied a real-world cohort to identify risk factors for cardiotoxicity to select patients in whom LVEF monitoring could be omitted. Methods: We included patients with HER2-positive MBC who received > 1 cycle of trastuzumab-based therapy in eight Dutch hospitals between 2000 and 2014. Cardiotoxicity was defined as LVEF 10%-points and was categorized into non-severe cardiotoxicity (LVEF 40–50%) and severe cardiotoxicity (LVEF 60% and no cardiotoxicity during prior neoadjuvant/adjuvant treatment, the cumulative incidence of severe cardiotoxicity was 3.1% after 4 years of trastuzumab. Despite continuing trastuzumab, LVEF decline was reversible in 56% of patients with non-severe cardiotoxicity and in 33% with severe cardiotoxicity. Conclusions: Serial cardiac monitoring can be safely omitted in non-smoking patients with baseline LVEF > 60% and without cardiotoxicity during prior neoadjuvant/adjuvant treatment

    PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar

    Full text link
    (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 μ\mum. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μ\mum, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 μ\mum AIB emission from class B11.2_{11.2} in the molecular PDR to class A11.2_{11.2} in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a "weeding out" of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula

    Full text link
    The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate

    Subsequent Event Risk in Individuals with Established Coronary Heart Disease:Design and Rationale of the GENIUS-CHD Consortium

    Get PDF
    BACKGROUND: The "GENetIcs of sUbSequent Coronary Heart Disease" (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD. METHODS: The consortium currently includes 57 studies from 18 countries, recruiting 185,614 participants with either acute coronary syndrome, stable CHD or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events. RESULTS: Enrollment into the individual studies took place between 1985 to present day with duration of follow up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (HR 1.15 95% CI 1.14-1.16) per 5-year increase, male sex (HR 1.17, 95% CI 1.13-1.21) and smoking (HR 1.43, 95% CI 1.35-1.51) with risk of subsequent CHD death or myocardial infarction, and differing associations with other individual and composite cardiovascular endpoints. CONCLUSIONS: GENIUS-CHD is a global collaboration seeking to elucidate genetic and non-genetic determinants of subsequent event risk in individuals with established CHD, in order to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators

    Subcutaneous or Transvenous Defibrillator Therapy.

    Get PDF
    BACKGROUND: The subcutaneous implantable cardioverter-defibrillator (ICD) was designed to avoid complications related to the transvenous ICD lead by using an entirely extrathoracic placement. Evidence comparing these systems has been based primarily on observational studies. METHODS: We conducted a noninferiority trial in which patients with an indication for an ICD but no indication for pacing were assigned to receive a subcutaneous ICD or transvenous ICD. The primary end point was the composite of device-related complications and inappropriate shocks; the noninferiority margin for the upper boundary of the 95% confidence interval for the hazard ratio (subcutaneous ICD vs. transvenous ICD) was 1.45. A superiority analysis was prespecified if noninferiority was established. Secondary end points included death and appropriate shocks. RESULTS: A total of 849 patients (426 in the subcutaneous ICD group and 423 in the transvenous ICD group) were included in the analyses. At a median follow-up of 49.1 months, a primary end-point event occurred in 68 patients in the subcutaneous ICD group and in 68 patients in the transvenous ICD group (48-month Kaplan-Meier estimated cumulative incidence, 15.1% and 15.7%, respectively; hazard ratio, 0.99; 95% confidence interval [CI], 0.71 to 1.39; P = 0.01 for noninferiority; P = 0.95 for superiority). Device-related complications occurred in 31 patients in the subcutaneous ICD group and in 44 in the transvenous ICD group (hazard ratio, 0.69; 95% CI, 0.44 to 1.09); inappropriate shocks occurred in 41 and 29 patients, respectively (hazard ratio, 1.43; 95% CI, 0.89 to 2.30). Death occurred in 83 patients in the subcutaneous ICD group and in 68 in the transvenous ICD group (hazard ratio, 1.23; 95% CI, 0.89 to 1.70); appropriate shocks occurred in 83 and 57 patients, respectively (hazard ratio, 1.52; 95% CI, 1.08 to 2.12). CONCLUSIONS: In patients with an indication for an ICD but no indication for pacing, the subcutaneous ICD was noninferior to the transvenous ICD with respect to device-related complications and inappropriate shocks. (Funded by Boston Scientific; PRAETORIAN ClinicalTrials.gov number, NCT01296022.)

    The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping

    Full text link
    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.Comment: 42 pages, 20 figures, submitted to Nuclear Instruments and Methods
    corecore